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Abstract A bounding algorithm for the global solution of nonlinear bilevel programs
involving nonconvex functions in both the inner and outer programs is presented. The algo-
rithm is rigorous and terminates finitely to a point that satisfies ε-optimality in the inner
and outer programs. For the lower bounding problem, a relaxed program, containing the
constraints of the inner and outer programs augmented by a parametric upper bound to the
parametric optimal solution function of the inner program, is solved to global optimality.
The optional upper bounding problem is based on probing the solution obtained by the lower
bounding procedure. For the case that the inner program satisfies a constraint qualification,
an algorithmic heuristic for tighter lower bounds is presented based on the KKT necessary
conditions of the inner program. The algorithm is extended to include branching, which
is not required for convergence but has potential advantages. Two branching heuristics are
described and analyzed. Convergence proofs are provided and numerical results for original
test problems and for literature examples are presented.

Keywords Bilevel program · nonconvex · global optimization · branch-and-bound · MPEC

1 Introduction

Bilevel programs are programs where an outer program is constrained by an embedded inner
program. Here, inequality constrained nonlinear bilevel programs of the form
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f ∗ = min
x,y

f (x, y)

min g(x, y) ≤ 0

y ∈ arg min
z

h(x, z) (1)

s.t. p(x, z) ≤ 0

q(z) ≤ 0

x ∈ X ⊂ R
nx , y, z ∈ Y ⊂ R

ny ,

are considered without any convexity assumptions. The co-operative (or optimistic, weak)
formulation [17] is assumed, where if for a given x the inner program has multiple optimal
solutions y, the outer optimizer can choose among them. In Appendix A the optimistic and
pessimistic formulations are discussed in more detail. Throughout the article only real-valued
solutions are considered and no methods to find all solutions are discussed. Dummy variables
(z instead of y) are used in the inner program since this clarifies some issues and facilitates
discussion.

There are many applications of bilevel programs as well as theoretical and algorithmic
contributions in the literature and the reader is directed to other publications for a review of
applications and algorithms [4,10,17,18,39,45,53]. To our best knowledge, no valid algo-
rithm has been proposed to solve bilevel programs to guaranteed global optimality when
nonconvexity is present in the inner program. Bard [3] considered a simpler formulation
without outer constraints and with a unique minimum for the inner problem, and proposed
an algorithm based on a grid search between a lower and an upper bound of the optimal
objective value, without a guarantee of convergence in the general case. Falk and Liu [21]
proposed a bundle method which obtains local solutions to the inner and outer programs.
Recently Tuy et al. [50] proposed an algorithm for bilevel programs satisfying a monotonicity
assumption.

The following example illustrates some of the implications of nonconvexity in the inner
program:

Example 1.1 The bilevel program

min
x,y

x + y

min y ∈ arg min
z

x z2

2 − z3

3

x ∈ [−1, 1], y, z ∈ [−1, 1]
has the unique optimal solution x = −1, y = 1 with an objective value of 0. Stationarity
of the inner objective gives xy − y2 = 0 and therefore y = 1, y = 0 and y = x are KKT
points of the inner problem. Out of them y = 1 is optimal for −1 ≤ x ≤ 2/3 and y = 0 is
optimal for 2/3 ≤ x ≤ 1. Allowing for a local solution of the inner program, e.g., by replacing
the inner program with its necessary but not sufficient KKT conditions leads to a relaxation
of the bilevel program. The optimal solution of this relaxation is x̄ = −1, ȳ = −1 with
an objective value of −2. This point however is not feasible in the original bilevel program

because the constraint y ∈ arg min
z

x z2

2 − z3

3 is violated.

Algorithms that guarantee convergence to the global solution or stationary points have
been proposed for related programs under nonconvexity, such as min-max programs [20,55],
semi-infinite programs (SIP) [8,9,23], and generalized semi-infinite programs [34].
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Here a bounding algorithm for the global solution of (1) is proposed allowing nonconvex
functions in both the inner and outer programs as well as multiple, or even uncountably
many, global minima in both the inner and outer programs. Equality constraints in the outer
program would not change anything significant in the development of the algorithm and are
only omitted for simplicity. The same holds for equality constraints in the inner program
that do not depend on the outer variables x. On the other hand, the presence of x-dependent
equality constraints in the inner program would require significant changes to the algorithm
presented, because these constraints would violate Assumption 3 which is required for the
convergence of the algorithm.

The algorithm is based on a collection of single-level optimization formulations. In the
next section the assumptions necessary for finite termination of the algorithm are outlined.
These assumptions also guarantee the existence of a minimum of (1). In Sect. 3 a lower
bounding procedure is presented based on the solution of an optimization problem where
the constraints of the inner and outer program are augmented by a parametric bound on the
optimal solution value of the inner program as a function of the outer variables. In Sect. 4
an upper bounding procedure is presented, which is based on probing the solution obtained
by the lower bounding procedure. In Sect. 5 the algorithmic framework is described along
with a proof of finite convergence to an ε-optimal solution. The basic strategy of the algo-
rithm is similar to the algorithm by Blankenship and Falk [9] for semi-infinite programs,
in that the lower bounding problems become successively tighter, until the upper bound-
ing problem is guaranteed to generate a feasible point. The novelty of the basic algorithm
compared to the algorithm by Blankenship and Falk is mainly the generation of parametric
upper bounds to the inner problem; this is significantly more difficult for bilevel programs
than it is for semi-infinite programs. In Sect. 6 a tightening of the lower bounding prob-
lem is described based on the KKT necessary conditions of the inner problem for a class
of bilevel programs satisfying additional assumptions. In Sect. 7 the algorithm is extended
to allow for branching and two branching heuristics are discussed, which can accelerate
convergence. In Sect. 8 a basic numerical implementation of the algorithm is described
and applied to literature and original problems. Finally, the performance of the algorithm is
described and improvements to the computational performance are proposed. Note also, that
the algorithm proposed here exploits ideas from global optimization proposed by Floudas
and coworkers [22,28] for bilevel programs with convex inner programs. The consideration
of nonconvex inner programs adds significant complications, in particular that the inner pro-
gram cannot be replaced by its KKT conditions. The main innovations proposed here are
the convergent lower bounding problem, the analysis of requirements for the KKT based
tightening of the lower bounding problem and the branching framework which is signifi-
cantly different from single-level programs. Another contribution is the generation of sev-
eral small but hard test-problems which can be used as a benchmark for future algorithmic
proposals.

2 Definitions and assumptions

This section contains definitions of terms used, assumptions required by the algorithm and
immediate consequences of these assumptions.

2.1 Definitions

Definition 1 (Inner Program) For a fixed x we denote:
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min
z

h(x, z)

s.t. p(x, z) ≤ 0 (2)

q(z) ≤ 0

z ∈ Y,

the inner program.

Definition 2 (Parametric Optimal Solution Function) The parametric optimal solution value
of (2) as a function of the outer variables is denoted h̄(x) and the set of optimal points
H(x) ⊂ Y . For infeasible inner programs (H(x) = ∅) the convention h̄(x) = +∞ is used.

Note that depending on the value of x, the set H(x̄) can be empty, a singleton, a finite set or
an infinite set.

Definition 3 (ε-Optimality) A pair (x̄, ȳ) is called ε-feasible if it satisfies the constraints of
the inner and outer programs and εh−optimality in the inner program, i.e.:

g(x̄, ȳ) ≤ 0

p(x̄, ȳ) ≤ 0

q(ȳ) ≤ 0

h(x̄, ȳ) ≤ h̄(x̄) + εh .

An ε-feasible point is called ε-optimal if it satisfies ε f -optimality in the outer program, i.e.:

f (x̄, ȳ) ≤ f ∗ + ε f .

Remark 1 In [35] it was argued that for bilevel programs (1) with nonconvex inner pro-
grams it is only plausible to expect a finitely terminating algorithm to provide a guarantee for
ε-optimality. Depending on the solvers used for the subproblems, the constraints may also
only be satisfied within ε-tolerance.

Definition 4 (x Feasible in the Outer Program) The subset of X which is admissible in the
outer program is denoted:

Xouter = {x ∈ X : ∃ ȳ ∈ Y : g(x, ȳ) ≤ 0}.
Definition 5 (x Feasible in the Inner Program) The subset of X which is admissible in the
inner program is denoted:

X inner = {x ∈ X : ∃ ȳ ∈ Y : p(x, ȳ) ≤ 0, q(ȳ) ≤ 0}.
Definition 6 (Level Sets) For a given f̄ ∈ R define the (potentially nonconvex) level sets

Ql( f̄ ) = {x ∈ X, y ∈ Y : g(x, y) ≤ 0, p(x, y) ≤ 0, q(y) ≤ 0, f (x, y) ≤ f̄ }
and the projection to the X space

Xl( f̄ ) = {x ∈ X : ∃ y ∈ Y : (x, y) ∈ Ql( f̄ )}.
Definition 7 (Partition) A partition of a set Xi ⊂ X is a finite collection of subsets, Xl ⊂
Xi , Xl+1 ⊂ Xi , . . . , Xl+m ⊂ Xi such that

Xi = Xl ∪ Xl+1 ∪ . . . ∪ Xl+m and int
(

Xl1
)

∩ int
(

Xl2
)

= ∅, ∀l1 �= l2,

compare also [30]. The definition for Xi × Y i is analogous.
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2.2 Assumptions

The algorithm presented relies on the global solution of nonconvex nonlinear programs
(NLPs) and mixed-integer nonlinear programs (MINLPs) (see, e.g., [48]). In the following
it is taken for granted that finite NLP and MINLP algorithms exist that can solve programs
involving a finite number of inequality constraints to εN L P -optimality. Additional require-
ments imposed by such solvers, e.g., continuous second derivatives, are not discussed. On
finite termination these NLP/MINLP solvers provide a lower bound to the optimal solution
value and a feasible point with an objective function value that is not more than εNLP larger
than the lower bound [48]. All the formulated subproblems are inequality constrained with
the exception of the stationarity constraint of the KKT-based lower bounds. The comple-
mentarity conditions are reformulated to inequalities involving binary variables. Since the
KKT conditions are not required for convergence, an approximate solution, i.e., a relaxation,
of the stationarity condition, suffices for a lower bound. Typical NLP/MINLP solvers, e.g.,
[48] satisfy inequalities only within a (nonzero) tolerance. To account for this, only slight
modifications would be needed for the results presented here. This restriction is not made,
because there is no theoretical requirement for violation of inequalities by either NLP solvers
or the algorithm.

As is typical in global optimization compact host sets are required:

Assumption 1 (Host Sets) The host sets X ⊂ R
nx , Y ⊂ R

ny are Cartesian products of
(compact) intervals, i.e., for all variables explicit bounds are known (x j ∈ [x L O

j , xU P
j ] for

j = 1, . . . , nx and y j ∈ [yL O
j , yU P

j ] for j = 1, . . . , ny).

Remark 2 Considering arbitrary bounded polyhedra as host sets would not essentially alter
the algorithm and the restriction to boxes is done for the sake of simplicity. With mild
restrictions on branching, for each node Xi × Y i we have x j ∈ [xi,L O

j , xi,U P
j ] and y j ∈

[yi,L O
j , yi,U P

j ].
Assumption 2 (Basic Properties of Functions) The functions f : X ×Y → R, g : X ×Y →
R

ng , h : X ×Y → R, and p : X ×Y → R
n p are continuous on X ×Y . Similarly, q : Y → R

nq

is continuous on Y .

Remark 3 By the continuity of the constraints and the compact host sets it directly follows
that X inner, Xouter and X inner ∩ Xouter are closed and therefore compact. Moreover, Ql( f̄ )

is compact for any f̄ and therefore also Xl( f̄ ) is compact. Finally, for all x̄ ∈ X inner the
minimum of the inner program exists.

Assumption 3 (Inner Problem) There exists some ε̃ f > 0 such that for each point x̄ ∈
Xouter ∩ X inner at least one of the following two conditions holds:

1. For any εh1 > 0 there exists a point z̃ ∈ Y such that

p(x̄, z̃) < 0, q(z̃) ≤ 0, h(x̄, z̃) ≤ h̄(x̄) + εh1. (3)

2. The outer objective value is ε̃ f worse than the optimal objective value f ∗

f (x̄, ȳ) > f ∗ + ε̃ f , ∀ȳ ∈ Y : p(x̄, ȳ) ≤ 0, q(ȳ) ≤ 0, g(x̄, ȳ) ≤ 0 (4)

or equivalently x̄ �∈ Xl( f ∗ + ε̃ f ).

Remark 4 By convention, for infeasible problems the optimal objective value is taken as
infinity ( f ∗ = +∞). Therefore for infeasible problems condition (3) must hold for all
x̄ ∈ Xouter ∩ X inner.
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Remark 5 Conditions (3) and (4) can both hold for some points.

Remark 6 Condition (3) of Assumption 3 allows the construction of parametric upper bounds
for the parametric optimal solution function of the inner program, thus guaranteeing conver-
gence of the algorithm. If this assumption was required for all x ∈ Xouter ∩ X inner, continuity
of the constraints p would give Xouter ∩ X inner = Xouter, or the inner program would be
feasible for all x that are admissible in the outer program. It has been argued that this should
always be the case [4,19], but here this restriction is not made. Note that points x �∈ X inner

are considered infeasible in the bilevel program. The proposed algorithm essentially checks
for Condition (3) for any point visited by the lower bounding problem. If this condition is
violated, the algorithm assumes that (4) is satisfied instead.

Remark 7 Using the continuity of the inner objective function h, a sufficient condition for
(3) is that for each x̄ ∈ Xouter ∩ X inner and for each solution point of the inner problem
z∗ ∈ H(x̄) and for each εz > 0 there exists a point z̃ ∈ Y , such that

p(x̄, z̃) < 0, q(z̃) ≤ 0, ||z̃ − z∗|| < εz . (5)

Remark 8 In the case of differentiability of the inner problem, condition (5) and therefore
also (3) can be derived from the Mangasarian–Fromowitz constraint qualification (MFCQ)
[5, p. 323] for the inner program.

3 Lower bounding procedure

In single-level optimization, lower bounds are typically obtained by the solution of a convex
relaxation. As discussed in [35], a valid relaxation of the constraint “y is a global minimum
of the inner program” is the constraint “y is feasible in the inner program” [53]. It can be
easily verified that the above requirement alone does not give a convergent lower bound, as
Example 3.1 shows.
Example 3.1 (Convergence of Lower Bound) Consider the linear min-max problem

min
y

y

s.t. y ∈ arg min
z

−z

y, z ∈ [−1, 1],
and note that the only feasible point is y = 1 with an optimal solution value of 1. Suppose
that branching is performed and consider a node Y i = [yi,L O , yi,U P ]. Replacing the inner
problem with its constraints results to a feasible problem and a lower bound of yi,L O , which
is lower than the best possible incumbent. As a consequence no node can be fathomed and
the lower bound remains at −1.

To achieve convergence parametric upper bounds for the optimal solution function of the
inner program in the lower bounding problem are included. Note that (1) is equivalent to [3]:

min
x,y

f (x, y)

s.t. g(x, y) ≤ 0

p(x, y) ≤ 0 (6)

q(y) ≤ 0

x ∈ X ⇒ h (x, y) ≤ h̄ (x)

x ∈ X, y ∈ Y.

123



J Glob Optim (2008) 42:475–513 481

This reformulation has also been used by Tuy et al. [51,52] in an algorithm for linear bilevel
problems. This reformulation has the advantage that while the inner program may have infi-
nitely many optimal solution points, it always has a unique optimal objective value. Thus,
by using this reformulation multiple global minima in the inner program pose no essential
complication.

Let now K be an index set for a finite collection of pairs
(
V k, yk

)
, composed of sets

V k ⊂ X and points yk ∈ Y , such that for each yk the inner constraints are satisfied for all
x̄ ∈ V k , i.e.,

q(yk) ≤ 0

p(x̄, yk) ≤ 0, ∀x̄ ∈ V k . (7)

Then, the program

min
x,y

f (x, y)

s.t. g(x, y) ≤ 0

p(x, y) ≤ 0 (8)

q(y) ≤ 0

x ∈ V k ⇒ h (x, y) ≤ h
(

x, yk
)

, ∀k ∈ K

x ∈ X, y ∈ Y

provides a relaxation of (6). Indeed, consider a point (x̄, ȳ) ∈ X × Y which is feasible in (6).
It directly follows g(x̄, ȳ) ≤ 0, p(x̄, ȳ) ≤ 0, and q(ȳ) ≤ 0. Furthermore, since ȳ is a global
minimum of the inner program for x̄ together with (7)

h (x̄, ȳ) = h̄ (x̄) ≤ h
(

x̄, yk
)

, ∀k ∈ K : x̄ ∈ V k

which proves that x̄, ȳ is feasible in (8). Therefore, a valid lower bound can be obtained from
the global solution value of (8). Note that the use of logical constraints is well established,
see, e.g., [6,41,54]. In Sect. 8 a simple implementation of these constraints is described.

Note that state-of-the-art global solvers in general provide only εNLP-estimates to the
solution of (8). To obtain a valid lower bound to (1), the final lower bound provided by the
solver has to be used as the lower bound. On the other hand, the εNLP-optimal point furnished
is used for the subsequent steps of the algorithm.

Remark 9 Assuming that finite upper and lower bounds are available, namely U B D and
L B D respectively, these can be augmented to problem (8) as a constraint L B D ≤ f (x, y) ≤
U B D with the aim of accelerating convergence. The lower bound inherited by the parent
node can be used as a lower bound L B D. The current incumbent can be used for U B D;
nodes with a lower bound that does not satisfy this inequality are fathomed anyway by value
dominance.

Remark 10 An alternative to the global solution of problem (8) is to further relax it using
convex relaxation methods, e.g., [48], and solve the resulting convex program with a convex
solver. In this case, also a feasible point of (8) should be obtained and used in the subsequent
steps of the algorithm. This can also be achieved by solving (8) with a global solver and a
loose tolerance εNLP.
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In the remainder of this section a three-step procedure is described to obtain points yk

and sets V k that satisfy (7). The first step is to fix the variables x to the values of the opti-
mal solution x̄ obtained by the lower bounding problem (8) and to solve the inner problem
globally

h∗ = min
z

h(x̄, z)

min p(x̄, z) ≤ 0 (9)

q(z) ≤ 0

z ∈ Y.

The results of this step are also used for the upper bounding procedure, see Sect. 4. Feasibility
of (9) is guaranteed by the solution of (8). Similarly to the solution of (8), the final lower
bound from the global solver needs to be used for h∗.

The second step is to pick εh2 > 0 and to find a point yk such that p(x̄, yk) < 0, q(yk) ≤ 0
and h(x̄, yk) ≤ h∗ + εh2, e.g., by solution of the optimization problem

min
z,u

u

s.t. h(x̄, z) ≤ h∗ + εh2

pi (x̄, z) ≤ u, i = 1, . . . , n p (10)

q(z) ≤ 0

z ∈ Y, u ≤ 0.

This problem is feasible by the solution of (9). Provided that condition (3) of Assumption 3 is
satisfied, the optimal solution value of (10) is negative and yk satisfies the required properties.
To accelerate convergence, the solution of the inner problem (9) can be used as an initial
guess. Finite convergence of the algorithm is guaranteed for sufficiently small εh2, see Sect.
5.1. If there are multiple solutions to (10), the path followed by the algorithm in finding an
optimal solution of the bilevel program may change depending on which solution of (10) is
obtained.

Remark 11 With the further assumption of the MFCQ for the inner program, it would be
possible to obtain a point yk by considering the solution of (9) and taking a small step in the
descent direction of the constraints pi of the inner program which are active at the optimal
solution of (9), i.e., equal to zero.

The third step is to identify a set V k , that satisfies (7) and contains x̄ in its interior, or its
boundary coincides with the boundary of X . This problem has been considered by Oluwole
et al. [42] in the context of kinetic model reduction and their methodology can be directly
used here. Successively smaller boxes V k are guessed as shown in Subroutine 1. For a given
box, (7) can in principle be checked by globally solving the nonsmooth nonconvex nonlinear
optimization problem

u = max
x∈V k

max
i

pi (x, yk).

If u ≤ 0, (7) is satisfied. Solving the above optimization problem is expensive and therefore
here interval analysis [1,40] is employed to overestimate u. A consequence of this overes-
timation is that the largest possible V k is not obtained. For an efficient implementation the
details of this procedure are important and should be tuned for the instance considered.
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Subroutine 1 (Calculating V k)
Given a point x̄, a point yk , and the bounds of the x variables xL O and xU P valid bounds for
the box V k = [vk,L O , vk,U P ] are calculated. For simplicity, successively smaller boxes are
guessed by scaling the box by d ∈ (0, 1].
1. Set d = 1.
2. LOOP

(a) FOR j = 1, . . . , nx DO
• IF x̄ j − d

2 (xU P
j − x L O

j ) < x L O
j THEN

– Set v
k,L O
j = x L O

j .

– Set v
k,U P
j = x L O

j + d (xU P
j − x L O

j ).

• ELSE IF x̄ j + d
2 (xU P

j − x L O
j ) > xU P

j THEN

– Set v
k,L O
j = xU P

j − d (xU P
j − x L O

j ).

– Set v
k,U P
j = xU P

j .
• ELSE

– Set v
k,L O
j = x̄ j − d

2 (xU P
j − x L O

j ).

– Set v
k,U P
j = x̄ j + d

2 (xU P
j − x L O

j ).
END

(b) Check (7) by evaluating the interval extension of p(·, yk) on V k .
IF (7) is satisfied THEN terminate ELSE Reduce d END.

END

We later prove that this is a finite procedure. The computational requirement for this
subroutine is typically insignificant compared to the lower bounding problems.

At this point a brief explanation of interval analysis is warranted. For a thorough anal-
ysis, the reader is referred to the literature, e.g., [1,40]. Since V k is a Cartesian product of
intervals and the constraints of the inner problem p are continuous, the image of each real
valued function pi (·, yk) : V k → R (for fixed yk) is an interval [pl

i , pu
i ]. An interval valued

function G(V k) which satisfies

[pl
i , pu

i ] ⊂ G(V k) = [pL
i , pU

i ]
is referred to as an inclusion function for pi (·, yk) on V k . An obvious requirement on the
inclusion function is convergence to the true image [pl

i , pu
i ] as ||vk,U P − vk,L O || is reduced.

The natural interval extension is an example of such an inclusion function. It is derived by
replacing each variable x j by the corresponding interval [vk,L O

j , v
k,U P
j ] and evaluating the

resulting expression using the rules of interval arithmetic [40]. The functions are decom-
posed into a finite sequence of compositions of elementary operations (e.g., multiplication,
addition) and intrinsic functions, such as monomials or the exponential function. For each of
the intrinsic functions and elementary operations, rules are available to construct the natural
interval extension. For instance, in the addition of two intervals the lower bound is given by
addition of the two lower bounds and the upper bound by addition of the two upper bounds.
In general, natural interval extensions lead to an overestimation of [pl

i , pu
i ], but in special

cases, such as monomials, an exact calculation is obtained. Tighter inclusion functions can
be calculated using Taylor model inclusions [1]. Note also that interval analysis methods can
be automated, see e.g., [49].

Example 3.2 (Illustration of Subroutine 1) Suppose a bilevel program with X = [0, 1], Y =
[−1, 1] and the additional (linear in z) constraint zx2 ≤ 0.6 in the inner problem. Suppose
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further that at some iteration of the main algorithm we have obtained x̄ = 0.5 and yk = 1.
Suppose finally that at each iteration of Subroutine 1 the diameter is divided by two. At the
first iteration d = 1 is used and the interval [0, 1] is probed. The upper bound obtained by
natural interval extensions of x2 in [0, 1] is 12 = 1 and violates the requirement ≤ 0.6. At
the second iteration d = 0.5 is used and the interval [0.25, 0.75] is probed. The upper bound
obtained by natural interval extensions of x2 in [0.25, 0.75] is 0.752 = 0.5625 and satisfies
the requirement ≤ 0.6. The result of Subroutine 1 is the box V k = [0.25, 0.75].

4 Upper bounding procedure

As discussed in [35], currently no method exists that provides valid, convergent upper bounds
for bilevel programs with nonconvex inner programs without the generation of feasible points.
An upper bounding procedure is now proposed by probing the feasibility of a candidate solu-
tion x̄.

Given a candidate x̄, the first step is to solve the nonconvex inner program (9) globally and
obtain an optimal solution ȳ and an optimal solution value h∗. For an arbitrary point x̄, this
program may be infeasible, in which case no solution to the bilevel program exists for x = x̄
and no upper bound can be obtained. The algorithm only considers candidates generated by
the solution of the lower bounding problem (8) for which the feasibility of (9) is guaranteed.
Given the solution h∗ the outer problem is solved for the fixed x̄

min
y

f (x̄, y)

s.t. g(x̄, y) ≤ 0

p(x̄, y) ≤ 0

q(y) ≤ 0 (11)

h(x̄, y) ≤ h∗ + εh

L B D ≤ f (x̄, y)

y ∈ Y,

allowing an εh-violation of the inner program objective. This step is performed, because, due
to potential non-uniqueness of the solutions of the inner program, a valid upper bound may
be obtained even if the solution to (9) does not satisfy the outer constraints. If (11) is infea-
sible then no solution exists for x = x̄; otherwise an upper bound is obtained. The inequality
L B D ≤ f (x̄, y) is added to accelerate convergence of (11) and to alleviate partially the
consequences of allowing εh-optimality in the inner program. Note that the solution of (11)
is only an upper bound in the sense of an ε-feasible point.

Remark 12 If the solution to (9) is feasible in the outer program, an upper bound is obtained
without solving (11), but (11) in general gives a better upper bound. Similarly, an upper
bound can be obtained through any feasible point of (11), e.g., a local solution. For reasons
of simplicity, it is assumed in the following that (11) is always solved to global optimality.
Under this assumption, the algorithmic behavior is not affected by which global minimum
is obtained in the solution of the inner program. If the optimal solution point of (9) satisfies
the outer constraints, it can be used as an initial guess for (11).
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5 Basic algorithm

The basic strategy of the algorithm is similar to the algorithm by Blankenship and Falk [9]
for semi-infinite programs. The addition of parametric upper bounds on the optimal solution
value of the inner program via the pairs

(
V k, yk

)
makes the lower bounding problems suc-

cessively tighter. Finite termination is essentially achieved because either the sets V k cover
X inner ∩ Xouter and infeasibility is proved, or a lower bounding problem furnishes a point
inside an existing set V k and close to a previously generated point and a ε-optimal point
is obtained. The generation of parametric upper bounds is possible due to condition (3) of
Assumption 3.

Input to the algorithm are the optimality tolerances ε f and εh , satisfying the assumptions
of Theorem 1.

Algorithm 1 (Basic Algorithm)
1. (Initialization)

Set L B D = −∞, U B D = +∞, k = 1.
2. (Lower Bounding)

Solve (8) globally.
IF Feasible THEN
• Set L B D to the optimal objective value (final lower bound).
• Set x̄ equal to the solution point (εNLP-optimal point).
ELSE (Infeasible Problem)

• Terminate.
END

3. (Termination)
IF L B D ≥ U B D − ε f THEN Terminate.

4. (Inner Problem)
Solve NLP (9) globally for x = x̄. (Recall that feasibility of this program is guaranteed.)
Set h∗ equal to the optimal objective value (final lower bound).

5. (Populate Parametric Upper Bounds to Inner Problem)
Solve (10). (Recall that feasibility of this program is guaranteed.)
• Set yk equal to the solution point.
• Obtain an appropriate set V k .
• Insert k to K .
• Set k = k + 1.

6. (Upper Bounding)
Solve NLP (11) for x = x̄ with h∗ as the upper bound for h(x̄, y) and (if feasible) obtain
an εNLP-optimal point ȳ.
IF Feasible and f (x̄, ȳ) < U B D THEN set U B D = f (x̄, ȳ) and (x∗, y∗) = (x̄, ȳ).

7. (Loop)
IF L B D ≥ U B D − ε f THEN Terminate ELSE Goto step 2.

A direct consequence of the validity of the lower and upper bounding procedures is that
on termination of the algorithm, if U B D = +∞, the instance is infeasible. Otherwise,
U B D is an ε f -estimate of the optimal solution value (U B D ≤ f ∗ + ε f ) and (x∗, y∗) is
an ε-optimal point (see Definition 3) at which U B D is attained. Note that depending on the
problem instance it may be beneficial to swap Steps 6 and 5 and only perform the latter if
L B D < U B D −ε f . Note that Algorithm 1 can be applied to bilevel programs irrespectively
of convexity properties.
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5.1 Convergence proof

In this section a convergence proof for Algorithm 1 is given. Note again that no convexity
or uniqueness assumptions are made for either the inner or outer programs.

Lemma 1 (Continuity of Optimal Solution Function of Inner Problem) The optimal objec-
tive function h̄ : X → R of the inner problem is continuous for all x ∈ X inner ∩ Xouter

satisfying (3).

Proof Consider any fixed x̄ ∈ X inner ∩ Xouter. By (3) for any εh1 > 0, there exists ỹ ∈ Y
such that

p(x̄, ỹ) < 0, q(ỹ) ≤ 0 (12)

h(x̄, ỹ) ≤ h̄(x̄) + εh1. (13)

By continuity of the inner objective h(·, ỹ) on X , for any εh3 > 0 there exists δ1 > 0 such
that

h(x, ỹ) < h(x̄, ỹ) + εh3, ∀x ∈ X : ||x̄ − x|| < δ1. (14)

Combining inequalities (13) and (14) it follows:

h(x, ỹ) < h̄(x̄) + εh1 + εh3, ∀x ∈ X : ||x̄ − x|| < δ1. (15)

By (12) and continuity of p(·, ỹ), there exists δ2 > 0 such that

p(x, ỹ) ≤ 0, ∀x ∈ X : ||x̄ − x|| < δ2.

Together with q(ỹ) ≤ 0, ỹ is feasible in the inner program for all x ∈ X : ||x̄ − x|| < δ2. By
the definition of h̄(x) we therefore have

h̄(x) ≤ h(x, ỹ), ∀x ∈ X : ||x̄ − x|| < δ2.

With (15) we obtain

h̄(x) < h̄(x̄) + εh1 + εh3, ∀x ∈ X : ||x̄ − x|| < min{δ1, δ2}
which proves that h̄ is upper semi-continuous at x̄.

By Theorem 4.2.1 in Bank et al. [2] for all x̄ ∈ X inner ∩ Xouter the optimal objective
function h̄ of the inner problem is lower semi-continuous. ��
Lemma 2 (Minimum of Bilevel Program Exists) Under Assumptions 1, 2 and 3, either (1)
is infeasible or the minimum of (1) exists.

Proof Let for now f ∗ denote the infimum of (1) without asserting that the minimum is
attained. By Definition 6 of the level sets, the bilevel program (1) is equivalent to

f ∗ = inf
x,y

f (x, y)

min h(x, y) ≤ h̄(x) (16)

(x, y) ∈ Ql( f ∗).

Since the level set Ql( f ∗) is compact (see Remark 3), so is the feasible set of (16). Noting
that for all (x, y) ∈ Ql( f ∗) it follows x ∈ Xl( f ∗) and condition (3) of Assumption 3 is
satisfied. Therefore, by Lemma 1 h̄ is continuous on the feasible set of (16). Therefore either
(16) is infeasible or its minimum is attained. As a consequence either (1) is infeasible or the
minimum of (1) exists. ��
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Lemma 3 (Sets V k have Nonempty Interior) For any (arbitrary but fixed) εh2>0 there exists
δ1>0 such that for any f̄ ≤ f ∗+ ε̃ f and for each point x̄ ∈ Xl( f̄ ) the points yk(x̄) generated
in Step 5 of Algorithm 1 satisfy

p(x, yk(x̄)) ≤ 0, q(yk(x̄)) ≤ 0, h(x̄, yk(x̄)) ≤ h̄(x̄) + εh2, ∀x ∈ X : ||x − x̄|| < δ1.

Note that δ1 is independent of x̄.

Proof Since f̄ ≤ f ∗ + ε̃ f , all points x̄ ∈ Xl( f̄ ) satisfy (3), Xl( f̄ ) is compact and by
Lemma 1 the optimal objective function of the inner problem h̄ : X → R is continuous at
all x̄ ∈ Xl( f̄ ).

Let ū(x) denote the parametric optimal solution value of (10). By the continuity of the
functions and the compactness of Xl( f̄ ), ū is continuous and its maximum over x̄ ∈ Xl( f̄ ) is
attained. Since εh2 > 0, by (3) ū is strictly negative on Xl( f̄ ). Therefore, there exists ũ < 0
such that for all x̄ ∈ Xl( f̄ )

pi (x̄, yk(x̄)) ≤ ũ < 0, i = 1, . . . , n p, q(yk(x̄)) ≤ 0, h(x̄, yk(x̄)) ≤ h̄(x̄) + εh2.

Since p(·, y) is continuous, and Xl( f̄ ) is compact, p(·, y) is uniformly continuous on Xl( f̄ ).
Therefore there exists δ1 > 0 (independent of x̄) such that for any x̄ ∈ Xl( f̄ )

p(x, yk(x̄)) ≤ 0, q(yk(x̄)) ≤ 0, h(x̄, yk(x̄)) ≤ h̄(x̄)+εh2, ∀x ∈ X : ||x − x̄||<δ1. ��
Remark 13 A direct consequence of Lemma 3 is that there exists d1>0, such that all sets V k

obtainable in Step 5 of Algorithm 1 satisfy

min
j

{
v

k,U P
j − v

k,L O
j

}
≥ d1.

Interval analysis underestimates the size of these sets, but it has been shown [33] that natural
interval extensions converge uniformly and therefore there exists d2 > 0, such that for all
x̄ ∈ Xl( f̄ ) the sets obtained satisfy

min
j

{
v

k,U P
j − v

k,L O
j

}
≥ d2.

Lemma 4 Let Xt ⊂ X be compact, and δ > 0. Consider any infinite sequence of points
xi ∈ Xt . There exists a finite index I > 0, such that

||xI − xi || ≤ δ, for some i < I.

Proof Consider any infinite sequence xi ∈ Xt . Since Xt is compact it is also bounded and
therefore the sequence is also bounded. Therefore there exists a point x̄ and a subsequence
xik that converges to x̄, i.e., there exists a finite K > 0, such that

||xik − x̄|| ≤ δ/2, ∀k ≥ K .

Therefore

||xiK+1 − xiK || ≤ ||xiK+1 − x̄|| + ||xiK − x̄|| ≤ δ/2 + δ/2 ≤ δ.

For I = iK+1 and i = iK we have the desired result. ��
Theorem 1 (Finite Termination) If the tolerances of the optimization subproblems εNLP and
εh2 in (10) satisfy

0 < εNLP ≤ min{ε f /2, εh, ε̃ f }
0 < εh2 < εh − εNLP,

then Algorithm 1 terminates finitely.
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Since the proof of Theorem 1 is lengthy, we first present an outline of the proof. Because
the lower bounding problem visits only points x̄ ∈ Xouter ∩ X inner, it will not visit points
x̃ �∈ Xl( f ∗ + ε̃ f ). Therefore, by Assumption 3 at the points visited by the lower bounding
problem it is possible to construct the parametric upper bounds to the optimal solution value
of the inner program via the pairs

(
V k, yk

)
. The corresponding logical constraints augmented

to the lower bounding problem successively tighten the lower bounding problem to the extent
that it will either become infeasible or furnish a point inside an existing V k which is also a
ε-optimal point.

Proof Let f̄ = f ∗ + ε̃ f . Note that only points x̄ ∈ Xl( f ∗ + εNLP) ⊂ Xl( f̄ ) are furnished
by the lower bounding problem. Points x ∈ Xl( f̄ ) satisfy condition (3) of Assumption 3
and this allows the generation of logical constraints via the pairs

(
V k, yk

)
. Let x̄ ∈ Xl( f̄ )

be furnished by the lower bounding problem. We will show that if in a subsequent iteration
the lower bounding problem furnishes a point (x̂, ŷ) with x̂ sufficiently close to x̄, it will be
ε-optimal. By Lemma 3 there exists δ1 > 0 such that for each point x̄ ∈ Xl( f̄ ) the points yk

generated in Step 7 of Algorithm 1 satisfy

p(x, yk) ≤ 0, q(yk(x̄)) ≤ 0, h(x̄, yk(x̄)) ≤ h̄(x̄) + εh2, ∀x ∈ X : ||x − x̄|| < δ1. (17)

Recall also

h(x̄, yk) ≤ h̄(x̄) + εh2.

By assumption εh − εN L P − εh2 > 0. By continuity of h̄ at x̄ there exists δ2 > 0 such that

h̄(x̄) ≤ h̄(x) + (εh − εh2 − εNLP)/2, ∀x ∈ X : ||x − x̄|| < δ2.

By continuity of h(·, yk) on X , there exists δ3 > 0 such that

h(x, yk) ≤ h(x̄, yk) + (εh − εh2 − εNLP)/2, ∀x ∈ X : ||x − x̄|| < δ3.

Combining these last three inequalities gives

h(x, yk) ≤ h̄(x) + εh − εNLP, ∀x ∈ X : ||x − x̄|| < min{δ2, δ3}.
Therefore, together with (17), yk is εh-optimal in the inner problem for all x ∈ X : ||x− x̄|| <

δ, where δ = min{δ1, δ2, δ3} > 0. Note that these (x, yk) are not necessarily feasible with
respect to the outer constraints, and therefore termination does not occur immediately.

Since Xl( f̄ ) is compact and δ > 0, by Lemma 4 after a finite number of iterations either
the lower bounding problem becomes infeasible, in which case the algorithm terminates,
or the lower bounding problem furnishes a point (x̂, ŷ), with x̂ sufficiently close to x̄, i.e.,
||x̂−x̄|| < δ. By construction of the lower bounding problem, this (x̂, ŷ) satisfies the inner and
outer constraints and also h(x̂, ŷ) ≤ h(x̂, yk) (by the logical constraint) and as a consequence

h(x̂, ŷ) ≤ h̄(x̂) + εh − εNLP

or ŷ is εh-optimal in the inner problem for x̂. Note that the εNLP tolerance is included here,
because the global solution of the inner problem only gives a εNLP-estimate of h̄(x̄). The
lower bound L B D obtained satisfies L B D ≥ f (x̂, ŷ) − εNLP. The point (x̂, ŷ) is feasible in
the bilevel program and therefore the upper bounding problem (Step 8) furnishes an upper
bound U B D, satisfying U B D ≤ f (x̂, ŷ)+εNLP. Noting now that the optimization problems
are solved with tolerance εNLP < 2 ε f it follows U B D − L B D ≤ 2 εNLP ≤ ε f and the
algorithm terminates. ��
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Remark 14 For a finite number of iterations, an arbitrarily large εh2 can be used for (10).
In the worse case, this will create a finite number of redundant logical constraints, but may
accelerate convergence, by obtaining larger sets V k at step 7.

Remark 15 Since it was proved that after a finite number of iterations the lower bound-
ing problem furnishes a point that satisfies ε-optimality, the solution of the upper bounding
problem is not required for finite convergence. On the other hand, the upper bounding proce-
dure may accelerate convergence, and therefore it is solved at every iteration. Note also that
L B D ≤ f ∗ is always guaranteed since the lower bounding problem is a valid relaxation.

5.2 Illustrative examples

Example 5.1 Recall Example 1.1 and the bilevel program

min
x,y

x + y

s.t. y ∈ arg min
z

x
z2

2
− z3

3
x ∈ [−1, 1], y, z ∈ [−1, 1]

with the unique optimal solution x = −1, y = 1 with an objective value of 0.
Consider the application of Algorithm 1. At the first iteration for the lower bounding

problem

min
x∈[−1,1],y∈[−1,1] x + y

is solved and L B D = −2, x̄ = −1, ȳ = −1 is obtained. Then the inner problem is solved
for x̄ = −1

min
z∈[−1,1] −1

z2

2
− z3

3

and ȳ = 1, h∗ = 0.888 is obtained. Since the constraints of the inner problem do not depend
on x , the pair ([−1, 1], 1) is used for the parametric upper bounds of the inner problem. The
first iteration is concluded by solving the augmented upper bounding problem for x̄ = 1:

min
y∈[−1,1] −1 + y,

min − 1 y2

2 − y3

3 ≤ 0.888

obtaining the unique optimal point of the bilevel problem x∗ = −1, y = 1.
A second iteration is required to confirm the optimality. Now the lower bounding problem

contains a parametric upper bound to the inner problem

min
x∈[−1,1],y∈[−1,1] x + y,

min x y2

2 − y3

3 ≤ x (−1)2

2 − (−1)3

3

which gives x̄ = −1, ȳ = 1, L B D = 0. Since L B D = U B D the algorithm terminates.
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Example 5.2 Consider the bilevel program

min
x,y

x2 − y

min y ∈ arg min
z

(
(z − 1 − 0.1x)2 − 0.5 − 0.5 x

)2
(18)

x ∈ [0, 1], y, z ∈ [0, 3].
For each x ∈ [0, 1] the inner program has two global minima, y = 1 + 0.1x ± 0.5

√
2 + 2 x .

Therefore (18) has the unique optimal solution x ≈ 0.2106, y ≈ 1.799 with an objective
value of approximately −1.755. This example is included to demonstrate how the algorithm
will proceed when the inner program has multiple global minima.

Consider the application of Algorithm 1. At the first iteration for the lower bounding
problem

min
x∈[0,1],y∈[0,3] x2 − y

is solved and L B D = −3, x̄ = 0, ȳ = 3 is obtained. Then the inner problem is solved for
x̄ = 0

min
z∈[0,3]

(
(z − 1)2 − 0.5

)2

obtaining h∗ = 0. Since the inner problem has two global minima, either ȳ ≈ 1.707 or
ȳ ≈ 0.2929 may be obtained as the solution point. The former is more advantageous for the
outer objective, and therefore suppose that the latter is obtained (worse-case analysis). Since
the constraints of the inner problem do not depend on x , the pair ([0, 1], 0.2929) is used for
the parametric upper bound of the inner problem. The first iteration is concluded by solving
the augmented upper bounding problem for x̄ = 0:

min
y∈[0,3] 0 − y,

min
(
(y − 1 − 0.1)2 − 0.5 − 0.5

)2 ≤ 0

obtaining ȳ = 1.707 and an upper bound of −1.707 to the optimal objective value of the
bilevel program. In subsequent iterations the parametric upper bound on the inner program
leads to convergence of the lower and upper bounds on the optimal objective value. Since
these parametric upper bounds are equivalent for the two global minima of the inner program,
the algorithmic behavior does not depend on the choice of minimum for the inner program.
Recall though that, in general, the validity range of the parametric upper bounds depends on
the solution point of (10).

6 KKT-based tightening of lower bounding problem

In the following a tightening of the lower bounding problem is proposed based on the KKT
necessary conditions, which requires additional assumptions on the inner program:

Assumption 4 (Assumptions for the KKT-based Lower Bound) For all x̄ ∈ Xouter ∩ X inner

the following three conditions hold: (i) differentiability of h(x̄, ·) and p(x̄, ·) on some open
set embedding Y, (ii) a constraint qualification for the inner program, and (iii) a-priori known
upper bounds for the KKT multipliers.
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Remark 16 The first two parts of Assumption 4 are standard for smooth NLP solvers. The
third part is not easy to verify for a general inner program, but there are many interesting
applications for which it is satisfied. For instance, in feasibility and flexibility problems [27]
the KKT multipliers are bounded above by one. Also, for semi-infinite programs bounds
can be readily estimated [38]. For problems for which any of the three parts is violated, the
KKT-based lower bounding problem is not applicable.

If Assumption 4 is satisfied, the lower bounding problem (8) can be tightened by further
requiring that y satisfies the KKT necessary conditions for the inner program. The KKT
multipliers are added to the set of variables

min
x,y,µ

f (x, y)

s.t. g(x, y) ≤ 0

p(x, y) ≤ 0

q(y) ≤ 0

x ∈ V k ⇒ h (x, y) ≤ h
(

x, yk
)

, ∀k ∈ K (19)

∇yh(x, y) + µT∇yp̃(x, y) = 0

µ j p̃ j (x, y) ≤ 0, j = 1, . . . , n p + nq + 2ny

µ j ∈ [0, µmax
j ], j = 1, . . . , n p + nq + 2ny

x ∈ X, y ∈ Y,

where for simplicity the constraints (p and q) of the inner program have been combined and
augmented (to p̃) to include the box constraints y ∈ Y , i.e.:

p̃ j (x, y) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

p j (x, y), j = 1, . . . , n p

q j−n p (y), j = n p + 1, . . . , n p + nq

y j−n p−nq − yU P
j−n p−nq

, j = n p + nq + 1, . . . , n p + nq + ny

−y j−n p−nq−ny + yL O
j−n p−nq−ny

, j = n p + nq + ny + 1, . . . , n p + nq + 2 ny .

At this point it is important to discuss briefly the importance of the upper bounds on the
KKT multipliers. For a more thorough discussion see [35,36]. The big-M reformulation of
the complementarity slackness condition needs explicit bounds for both the constraints gi

and KKT multipliers µi . Fortuny-Amat and McCarl [24] first proposed the big M-reformu-
lation but do not specify how big M should be. Moreover, for a valid lower bound a further
relaxation or a global solution of the relaxations constructed is needed, and for either of these
typically all variables need to be bounded [44,48]. The regularization approach as in Stein
and Still [47] does not need bounds for the regularization but if the resulting program is to
be solved to global optimality bounds on the KKT multipliers are most likely needed. Recall
also, that for programs with a special structure upper bounds may be known a priori or it may
be easy to estimate those.
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Note that as Example 6.1 shows, the addition of the KKT necessary conditions does
not guarantee convergence without the parametric upper bounds for the inner
program.

Example 6.1 (Convergence of KKT-based Lower Bound) Consider the trivial bilevel pro-
gram

min
y

y

s.t. y ∈ arg min
z

−z2

y, z ∈ [−0.5, 1],

and note that the only feasible point is y = 1 with an optimal solution value of 1. The inner
problem has three KKT points namely y ∈ {−0.5, 0, 1}. Suppose that branching is per-
formed. At each iteration there exists a node containing −0.5, which gives a lower bound of
−0.5, which is lower than the solution value of the only feasible point. As a consequence the
lower bound does not converge. In order to confirm the above described behavior numerically,
the solvers BARON, MINOS and KNITRO were tested through GAMS version 22.0 [11]
on the MPEC described above. Irrespectively of the initial guess all three solvers con-
verge to the global optimum of the MPEC (y = −0.5) which is infeasible in the bilevel
program.

For bilevel programs with an inner program that is convex on Y for each fixed x̄ and that
satisfies Assumption 4, application of the KKT-based lower bounding problem (19) leads to
convergence at the first iteration. On the other hand, if the simpler lower bounding problem
(8) is used on such programs, the convexity is not exploited.

7 Algorithmic extension to branching

Algorithm 1 is now generalized to a branch-and-bound framework. Branching is an inter-
esting heuristic for accelerating the convergence and has the advantage that it allows more
flexibility, such as the local solution of certain subproblems. Before describing the algo-
rithms a few points need to be clarified which are different from branching in single-level
programs. While the outer variables x can be considered in the same manner as for sin-
gle-level programs, the inner variables cannot since they participate in both the inner and
outer problems. Consider a node for which Y has been restricted to Y i . In the lower bound-
ing and upper bounding problems it is valid to require y to Y i since this is a restriction
of the bilevel program and equivalent to the situation in single-level programs. On the
other hand, for the solution of the inner level problem (9) the entire host set (Y as op-
posed to Y i ) has to be considered, for otherwise h∗ would not correspond to the optimal
solution of the inner problem, see also [36]. Similarly in (10) Y should not be restricted
to Y i in order to obtain the required point yk . Finally, in the KKT based lower bounding
problem (19) the host set for the KKT conditions should not be restricted to Y i either, be-
cause this would generate spurious KKT points. In essence, one can branch on y but not
on z.

Input to the algorithm are the optimality tolerances ε f and εh , satisfying the assumptions
of Theorem 2.

123



J Glob Optim (2008) 42:475–513 493

Algorithm 2 (Generalized Algorithm)
1. (Initialization)

Set L B D = −∞, U B D = +∞, k = 1 and l = 1.
Set K = ∅ and N = {X × Y }.

2. (Termination Test)
Delete from N all nodes Xi × Y i with L B Di ≥ U B D − ε f (Fathoming by value
dominance).
Set L B D = min

Xi ×Y i ∈N
L B Di .

IF N = ∅ THEN Terminate.
3. (Node Selection)

Select a node Xi × Y i from N according to some node selection heuristic.
4. (Lower Bounding)

Solve (8) or (19) globally.
IF Feasible THEN
• Set L B Di to the optimal objective value (final lower bound).
• Set x̄ equal to the solution point (εNLP-optimal point).

ELSE (Fathoming by Infeasibility)
• Delete node Xi × Y i from N and goto step 2.
END

5. (Fathoming by Value Dominance)
IF L B Di ≥ U B D − ε f THEN delete node Xi × Y i from N and goto step 2.

6. (Inner Problem)
Solve NLP (9) globally for x = x̄. (Recall that feasibility of this program is guaranteed.)
Set h∗ equal to the optimal objective value (final lower bound).

7. (Populate Parametric Upper Bounds to Inner Problem)
Solve (10). (Recall that feasibility of this program is guaranteed.)
IF u∗ < 0 THEN
• Set yk equal to the solution point.
• Obtain an appropriate set V k .
• Insert k to K .
• Set k = k + 1.
ELSE
• Delete node Xi × Y i from N and goto step 2.

END
8. (Upper Bounding)

Solve NLP (11) for x = x̄ with h∗ as the upper bound for h(x̄, y) and (if feasible) obtain
an εNLP-optimal point ȳ.
IF Feasible and f (x̄, ȳ) < U B D THEN set U B D = f (x̄, ȳ) and (x∗, y∗) = (x̄, ȳ).

9. (Optional Branching Step)
Delete node Xi × Y i from N .
Partition the set Xi ×Y i into m nodes Xl ×Y l , Xl+1×Y l+1, . . . , Xl+m ×Y l+m according
to some branching heuristic.
Set L B Dl = L B Dl+1 = · · · = L B Dl+m = L B Di .
Add the new nodes to N .
Set l = l + m.

10. (Loop)
Goto step 2.
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At this point a justification of the potential fathoming at Step 7 is provided. If the lower
bounding problem furnishes points x̃ that do not satisfy (3), by Assumption 3, it follows
x̃ �∈ Xl( f ∗ + ε f ) and therefore the lower bound (with or without the KKT heuristic) is
higher than the optimal solution value: L B Di ≥ f ∗ + ε f . The solution of the lower bound-
ing problem is found within tolerance εNLP and therefore, as long as εNLP < ε f such points
can only be visited if branching is performed and only in nodes that do not contain points
x̃ ∈ Xl( f ∗).

7.1 Convergence proof

In this section a convergence proof for Algorithm 2 is given. Note again that no convex-
ity or uniqueness assumptions are made for either the inner or outer programs. For finite
termination without additional assumptions on the problem instance, some restrictions on
the branching and/or node selection heuristics are required. In Theorem 2, finite termina-
tion is proved for the cases of best-bound and breadth-first node selection heuristics. It is
possible to show finite termination for other heuristics, but this is outside the scope of this
paper.

Theorem 2 (Finite Termination) If the tolerance of the optimization subproblems εNLP and
εh2 in (10) satisfy

0 < εNLP ≤ min{ε f /2, εh, ε̃ f }
0 < εh2 < εh − εNLP,

the branching heuristic is exhaustive [29] in X and either of the following node selection
heuristics is employed

1. breadth-first
2. best-bound

then Algorithm 2 terminates finitely.

The proof of Theorem 2 is similar to Theorem 1. Since the branching heuristic is exhaus-
tive in X , the nodes visited eventually become smaller than the smallest possible V k and are
fathomed.

Proof Let f̄ = f ∗ + ε̃ f and δ have the same meaning as in the proof of Theorem 1.

1. Breadth-first node selection heuristic
Using the breadth-first node selection heuristic, and since the branching is exhaustive in
X , for any d > 0, after a finite number of iterations for all nodes i and all variables x j it
follows

xi,U P
j − xi,L O

j < d, ∀ j = 1, . . . , nx , ∀i ∈ N .

Note that nodes i with Xi ∩ X inner ∩ Xouter = ∅ are fathomed by infeasibility. With-
out loss of generality such nodes are ignored in the following. At every level, one or
more nodes satisfy Xl( f ∗) ∩ Xi �= ∅. For all these nodes the lower bounding prob-
lem generates points x̄ ∈ Xl( f ∗ + εN L P ) ⊂ Xl( f̄ ). Once d is sufficiently small such
that

||x − x̄|| < δ, ∀x ∈ Xi
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the lower bounding problem of all children nodes j is either infeasible or furnishes (x̂, ŷ)

with x̂ sufficiently close to x̄, leading to an upper bound U B D j such that U B D j −
L B D j ≤ 2 εNLP ≤ ε f . In either case all children nodes of i are fathomed. If the prob-
lem is infeasible, all nodes satisfy Xl( f ∗) ∩ Xi �= ∅ and are fathomed. Otherwise, at
least one node contains an optimal solution and furnishes U B D j ≤ f ∗ + ε f = f̄ . With
this incumbent, all nodes Xi , for which Xl( f ∗) ∩ Xi = ∅ are fathomed when they are
visited.

2. Best-bound node selection heuristic
At each iteration, a node with the best lower bound is chosen. Therefore only nodes i
with an inherited lower bound L B Di ≤ f ∗ can be chosen.
Consider any infinite nested sequence of nodes. The nodes in this sequence satisfy
Xl( f ∗) ∩ Xi �= ∅, and therefore the lower bounding problem generates points x̄ ∈
Xl( f ∗ + εNLP) ⊂ Xl( f̄ ). Since branching is exhaustive in X , for any d > 0, after a
finite number of iterations for all variables x j it follows

xi,U P
j − xi,L O

j < d, ∀ j = 1, . . . , nx .

Similarly to the best-bound heuristic this leads to either fathoming by infeasibility or
generation of an upper bound such that U B Di − L B Di ≤ ε f and the node is fathomed.
Since L B Di ≤ f ∗, this upper bound is sufficient to fathom all nodes by value domi-
nance.

��
Remark 17 Note the requirement that the branching procedure is exhaustive allows the
branching to be performed only every finite number of iterations. Moreover, the proof can be
extended to the case that branching is performed only a finite number of iterations and the
resulting nodes are revisited without further branching.

7.2 Branching heuristics

Algorithm 1 is a special case of Algorithm 2 for the extreme case of no branching. A great
number of additional heuristics are conceivable, and here two of particular interest are dis-
cussed. A simple choice is to perform branch-and-bound without any distinction between
x and y by bisection on the variable with the current largest range. This procedure corre-
sponds to a common branching heuristic in global single-level optimization. Convergence is
achieved by a combination of the node shrinking and the addition of parametric upper bounds
to the inner problem.

Remark 18 For the breadth-first selection heuristic and branching by bisection on the var-
iable with the current largest range, finite convergence can be guaranteed for ε̃ f = 0 in
condition (4).

A more elaborate and specialized branching heuristic is to branch only on the x variables
by partitioning the node into a set of nodes in such a way that one of the children nodes
corresponds to the set V k . The advantage of this branching heuristic is that it avoids the
use of logical constraints. Given the parent node bounds on the variables xi,L O and xi,U P

and the box bounds vk,L O and vk,U P a simple procedure for this partitioning is described in
Subroutine 2 and illustrated graphically in Fig. 1.

Subroutine 2 (Branching into 2nx + 1 Nodes)
Two temporary vectors x̃L O and x̃U P and two temporary variables t1 and t2 are used.
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Node

x2 Node

Node

x1x1

x2

Node
Node

Node

Node 5

Node

3

2

1

2
1 3

4

Fig. 1 Graphical illustration of Subroutine 2 for Example 1. In the left hand side V k (box 1) is in the lower
left corner of Xi and therefore only three children nodes are created. In the right hand side V k (box 1) is in
the interior of Xi and therefore 2nx + 1 = 5 children nodes are created

1. (Initialization)
Set x̃L O = vk,L O and x̃U P = vk,U P .

2. (Node corresponding to V k box)
Create node with x ∈ [x̃L O , x̃U P ].

3. (Up to two nodes per variable)
FOR j = 1, . . . , nx DO

• Set t1 = x̃ L O
j and t2 = x̃U P

j

• IF t1 > xi,L O
j THEN

– x̃ L O
j = xi,L O

j and x̃U P
j = t1.

– Create node with x ∈ [x̃L O , x̃U P ].
• IF t2 < xi,U P

j THEN

– x̃ L O
j = t2 and x̃U P

j = xi,U P
j .

– Create node with x ∈ [x̃L O , x̃U P ].
• Set x̃ L O

j = xi,L O
j and x̃U P

j = xi,U P
j .

By construction, the created nodes are a partition of the parent node and a maximum of
2nx + 1 children nodes are generated.

Remark 19 When the set V k is equal to Xi , e.g., when the inner constraints do not depend on
x, this procedure re-creates the node Xi which is equivalent to the heuristic of no branching.

Example 7.1 (Illustration of Subroutine 2) Consider the application of Subroutine 2 for
nx = 2 and Xi =[0, 1]2. Suppose first that V k = [0, 0.5]2. Three children nodes are cre-
ated, namely [0, 0.5]2, [0.5, 1] × [0, 1] and [0, 0.5] × [0.5, 1]. Suppose now that V k =
[0.25, 0.75]2. Five children nodes are created, namely [0.25, 0.75]2, [0, 0.25]×[0, 1], [0.75,

1]× [0, 1], [0.25, 0.75]× [0, 0.25], [0.25, 0.75]× [0.75, 1]. The latter case is the worse case
possible since 2nx + 1 = 5. Both cases are illustrated in Fig. 1.
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8 Implementation and numerical results

8.1 Implementation

The logical constraints in the lower bounding problem and the complementarity conditions
of the KKT-based lower bounding problem were implemented using the big-M formulation
[24,25]. Given a node Xi and a box V k it is first checked if their intersection is empty. If it is
(Xi ∩ V k = ∅) the constraint does not need to be introduced. Also if Xi ⊂ V k the constraint
is directly introduced

h(x, y) ≤ h(x, yk).

Otherwise up to two binary variables and constraints are introduced for each component of
x, as described in Subroutine 3. Therefore up to 2nx + 1 binary variables are required to
formulate a logical constraint.
Subroutine 3 (Implementation of Logical Constraints)
• Set l = 0
• FOR j = 1, . . . , nx DO

– IF v
k,L O
j > xi,L O

j THEN
∗ Set l = l + 1 and introduce a binary variable wl∈{0, 1} corresponding to
x j > v

k,L O
j .

∗ Introduce a constraint

wl ≥ x j − v
k,L O
j

xi,U P
j − xi,L O

j

.

– IF v
k,U P
j < xi,U P

j THEN
∗ Set l = l + 1 and introduce a binary variable wl ∈ {0, 1} corresponding to
x j < v

k,U P
j .

∗ Introduce a constraint

wl ≥ v
k,U P
j − x j

xi,U P
j − xi,L O

j

.

END FOR
• Introduce the logical constraint as

h(x, y) ≤ h(x, yk) +
∑l

i=1
(1 − wi )(h

max − h(x, yk)),

where hmax ≥ h (x, y) for all (x, y) ∈ Xi × Y i . hmax can be easily estimated using inter-
val analysis, see, e.g., [40]. Note that unless wi = 1, for all i = 1, . . . , l this constraint
is redundant.

Note that the constraint x∈V k⇒h (x, y) ≤ h
(
x, yk

)
is only introduced for the interior of V k .

For the KKT-based lower bounds the complementarity condition µi p̃i (x, y) is reformu-
lated with the help of a binary variable wl indicating if the constraint is active or not

µi ≤ Mi wl

− p̃i (x, y) ≤ Pi (1 − wl),

noting that p̃i (x, y) ≤ 0 and µi ≥ 0. By Assumption 4 an upper bound Mi for the KKT
multipliers is known a priori. Bounds Pi on the constraints can be easily estimated by interval
extension, see e.g., [40].
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The algorithm was implemented in C++ and tested on a 64-bit Xeon processor 3.2GHz
running Linux 2.6.13. The best-bound heuristic occurred at the node selection step, and
among nodes with the same lower bound, the one that entered the set of active nodes (N )
first was always used. As is typical with optimization codes, both an absolute and relative
termination criterion was used and termination occurred if either of the criteria was satisfied.

The resulting nonconvex NLP and MINLPs were all solved globally with BARON ver-
sion 7.4 [44] using GAMS version 22.0 [11] through system calls. Note that strictly speaking
BARON does not satisfy the assumption about solvers, since the final lower bound furnished
may not be strictly below the optimal objective function value (it can be slightly above); since
tight tolerances were used for the subproblems, this consideration does not have practical
implications. The occurrence of third order monomials, e.g., x3 caused very slow conver-
gence of the formulated (MI)NLPs in some of the case studies. For consistency purposes,
third order monomials are therefore systematically encoded as a product of a square and a
linear term, e.g., x2 x , and fourth order monomials as the product of two squares, e.g., x2 x2.

8.2 Test set

To test the algorithm literature examples collected in [28,43] are used along with and a num-
ber of new test problems with either nonconvex inner problems or problems with a structure
that causes convergence issues with previous proposals. The test set by Colson et al. [15,16]
was not used because the inner problems are convex and would not add anything to the focus
of this paper. The problem formulations with an analysis of the feasible sets and optimal
solutions as well as justifications for the values used for the bounds on the KKT multipliers
are given in [37].

Table 1 contains a summary of the problem properties. The first column is the label of
the example. The second through sixth columns (nx , ny, ng, n p, nq ) contain the number of
x variables, y variables, constraints in the outer problem, constraints in the inner problem
that depend on the outer variables, and constraints in the inner problem (excluding box
constraints) that do not depend on the outer variables. The seventh through tenth columns
( f, g, h, p) contain the functional form of the outer objective, the outer constraints, the inner
objective and the inner constraints: A stands for affine linear, C stands for convex nonlinear,
N stands for nonconvex nonlinear, and P stands for pseudoconvex; for the outer functions
the characterization is joint in x and y while for the inner functions the characterization is
only for the z-dependence, e.g., convex means partially convex on Y . The eleventh column
(h) indicates whether or not the inner objective depends on the outer variables; F stands for
false (no dependence), T for true, and a dash is used for the problems without x variables
(nx = 0). Finally, the last two columns contain the optimal solution value and the set of opti-
mal solutions as obtained by an analysis of the problems. Problems mb_2_3_01, mb_5_5_01,
mb_5_5_02 and gf_3 have not yet been analyzed completely and the best available solution
value, along with a (presumably) optimal solution is given. To emphasize that these problems
have not been analyzed, a question mark is set next to the best available solution value.

Note that some of the problems do not contain any outer variables (nx = 0). These prob-
lems can be easily solved by solving the inner problem and then solving an augmented outer
program. They have been included because, despite their simplicity, they reveal problems
with certain approaches.

Tables 2–4 contain the numerical results with the three branching heuristics presented.
The branching on the x variables in 2nx + 1 nodes is only applied to the test problems for
which the resulting algorithm is different than the extreme of no branching. The optimality
and feasibility tolerances for BARON were set to εNLP = 10−6 for all problems. For most
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problems the optimality tolerance for the inner problem was set to εh = 10−5 and the abso-
lute and relative termination criteria to ε f = 10−4. For some of the literature problems, when
the KKT heuristic is not used for the lower bound, the computational requirement is quite
high, and the tolerances were set according to a tradeoff between accuracy and computational
time. For these problems the solution is repeated with the KKT-based lower bounds and the
default tolerances. Note that for all problems the tolerances used satisfy the assumptions in
Theorems 1 and 2.

The first column (Label) has the label of the problem, while the second ( f ∗) and third
(x∗, y∗) the optimal objective value and set of optimal solutions respectively, obtained by
analysis. The fourth column (µmax) contains the maximal values for KKT multipliers used,
and the fifth (εh) the optimality tolerance for the inner program. For some problems a sequence
of decreasing εh2 to obtain the points yk was used in step 7; the starting value is given in
the sixth column (ε0

h2). This value was decreased by a factor of 1.1 at each iteration down to
0.8εh . For the rest of the problems εh2 = 0.8εh was used for all iterations. The seventh col-
umn (ε f ) contains the termination tolerance (absolute and relative termination criteria were
set equal). To guess the boxes V k , a decreasing sequence was used; each time the interval
diameter was set to one and decreased by a factor of 0.9 until the interval extensions showed
feasibility. Natural interval extensions were used.

The eighth through fourteenth columns contain the results obtained with the use of simple
lower bounds while the fifteenth through twenty-first columns contain the results obtained
with the use of the KKT heuristic for the lower bounds; f̄ shows the optimal objective value
obtained; x̄, ȳ shows the optimal solution obtained; UBD shows the node at which the opti-
mal solution was first obtained; #UBD shows the number of upper bounding calls; #LBD
shows the number of lower bounding calls; the first time columns show the sum of CPU time
reported by GAMS and spent in the main program, while the second time columns show
the time obtained by the timing function. Note that there is a significant difference between
these two times requirements, presumably due to the system calls and processing time for
GAMS. Because some CPU times are very small, an average of 10 runs is presented.

8.3 Conclusions from numerical experiments

All the test problems were solved without significant numerical difficulties. For sufficiently
small tolerances the solution furnished approaches the optimal solution. As in single-level
optimization appropriate choice of tolerances is necessary for computational efficiency and
accuracy of solutions. Moreover, the computational requirements are greatly dependent on
the problem structure.

The KKT-based heuristic for the lower bound, when applicable, greatly reduces the num-
ber of iterations needed, and moreover since it gives a tighter bound, the upper bounding
procedure is less likely to produce points far away from (absolutely) feasible points. On the
other hand, the cost per iteration is higher because of the complementarity conditions.

As expected, when no branching is performed, the number of iterations is smaller, but
the cost per iteration is higher. For the test set considered, there is no clear advantage of
one branching heuristic over the other, which indicates that the optimal branching heuristic
depends on the problem. As a general guideline for problems that are solved in few iterations
no branching is advantageous. For larger problems, the elaborate branching to 2nx +1 nodes
is expected to outperform the other heuristics because no logical constraints are needed.
Finally, for any given problem, typically either the elaborate branching or no branching will
outperform the regular branching.
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9 Conclusions and future work

An algorithm for the global solution of bilevel programs involving nonconvex functions was
presented. The novelty is that nonconvexity in the inner program is permitted and a guaran-
teed global solution is obtained. Finite termination of the algorithm to an ε-optimal solution
is proved. An implementation is described and tested on a number of original and literature
test problems.

It would be interesting to consider the automatic generation of problems with difficult
properties. Calamai and Vicente [12–14] have proposed such a method for bilevel programs
involving linear and quadratic functions. The extension to nonconvex functions would be
of interest. More importantly, several alterations to the algorithm and implementation are
conceivable. An interesting alternative to the MINLP formulation of the KKT-based lower
bounds is an MPEC formulation [46,47]. Also, different global MINLP algorithms could
be applied, such as outer approximation [31]. Furthermore, in the case of regular branching,
the introduction of the logical constraints to the lower bounding problems could be deferred
until the node size is such that the parametric upper bound to the inner problem is valid for
the entire node (Xi ⊂ V k). Preliminary experimentation shows that this is not advantageous.

There are many alternatives to the implementation of logical constraints described in Sub-
routine 3. For instance, the number of binary variables used can be reduced to at most nx for
each logical constraint, by the use of nonconvex nonlinear constraints. For instance

w j ≥ 1 −
(

2x j − v
k,L O
j − v

k,U P
j

)2

(
v

k,U P
j − v

k,L O
j

)2

enforces w j = 1 if x j ∈ [vk,L O
j , v

k,U P
j ]. Alternatively, instead of introducing the constraint

for the entire box V k , it may be advantageous to introduce it for an inscribed ellipsoid using
a single binary variable

w ≥ 1 −
nx∑
j=1

(
2x j − v

k,L O
j − v

k,U P
j

)2

(
v

k,U P
j − v

k,L O
j

)2 .

Finally there are alternatives to the big-M formulation such as the convex hull formulation,
see e.g., [26].

The algorithm was presented in a branch-and-bound framework. A more general alter-
native is to embed it in a generalized branch-and-cut framework, such as the one described
in [32] for nonconvex MINLPs. Also, other branching heuristics could be introduced, such
as branching only on a subset of the variables (the complicating variables in some sense)
or branching on the inner variables for the lower bounding problem (using Y i ) but not for
the upper bounding problem (keeping Y ). In single-level programs algorithms incorporating
domain reduction show significant performance enhancements over pure branch-and-bound
[48]. It would be interesting to also consider domain reduction for bilevel programs.

The algorithm presented here relies on the global solution of the subproblems, resulting in
a nested exponential procedure, and it would be interesting to, at least partially, eliminate this
nested procedure. Currently, no alternative other than global solution of the inner problem
exists to obtain or confirm an upper bound, but an obvious possibility is to solve the upper
bounding problem only periodically. On the other hand, the lower bounding problem could be
solved locally to obtain a candidate x̄ and a convex relaxation of the lower bounding problem
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(8) could be solved to obtain the lower bound. Preliminary experimentation with these ideas
showed slower convergence, but for problems of large size they may be beneficial. Also, to
obtain points yk , the solution of simpler programs than (10) is conceivable.

The ideas presented here could be extended to address some related programs such as
flexibility problems [27], semi-infinite programs, and bilevel programs involving binary vari-
ables. To that extent the algorithmic ideas presented here could be combined with different
approaches, such as methods based on interval-extensions [7,8,33]. Finally, extensions to
equality-constrained inner programs, multiple inner problems, and the pessimistic formula-
tion as described in Appendix A are of interest.

Acknowledgements This work was supported by the DoD Multidisciplinary University Research Initiative
(MURI) program administered by the Army Research Office under Grant DAAD19-01-1-0566. We would
like to thank Cha Kun Lee for the branch-and-bound code we derivatized and for fruitful discussions.

Appendix A Optimistic versus pessimistic formulation

The focus of the paper is the optimistic (or weak, co-operative) formulation (1). In this appen-
dix this formulation is compared to a more general (ambiguous) case and the other extreme
of the pessimistic (or strong) formulation. The applicability and limitations of the algorithms
proposed to these alternative formulations are discussed.

The basic principle of a bilevel program is that two decision makers are present, each one
with their own decision variables, objective and constraints. There is a hierarchy among them:
the leader (or outer program, upper-level program) decides on values for the variables x; then
the follower (or inner program, lower-level program) decides on values for the variables y.
The resulting general formulation [4,18] is given by

min
x

f (x, y)

s.t. g(x, y) ≤ 0

min
y

h(x, y) (20)

s.t. p(x, y) ≤ 0

q(y) ≤ 0

x ∈ X ⊂ R
nx , y ∈ Y ⊂ R

ny .

It is well-known and easy to verify that (20) is not well-defined unless there exists at most
one solution to the inner program for each x ∈ X [4,18]. The optimistic formulation (1) is
one extreme to resolve the ambiguity that arises in the case of multiple solutions to the inner
program. The other extreme is the pessimistic formulation:

f ∗ = min
x,y

f (x, y)

s.t. y ∈ arg maxw f (x, w)

s.t. g(x, w) ≤ 0

w ∈ arg min
z

h(x, z)

s.t. p(x, z) ≤ 0
q(z) ≤ 0

x ∈ X ⊂ R
nx , y, w, z ∈ Y ⊂ R

ny .
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Note that points x̄ for which no w satisfies the outer constraints and the optimality constraint
are infeasible.

For some applications either of the two extremes is appropriate while for other applica-
tions neither is. For instance, if the leader is the head of a well-organized company and the
follower the head of a division inside the company, it is reasonable to assume co-operation
and thus the optimistic formulation. If, on the other hand, the follower has complete infor-
mation as well as an incentive for hurting the leader, the pessimistic formulation should be
used. Finally, if the follower does not have any information about the objectives and con-
straints of the leader neither the optimistic nor the pessimistic formulation seems adequate
and the ambiguous formulation (20) is closer to the reality. Other formulations to resolve the
ambiguity are conceivable.

The algorithms proposed in this article require a mathematically well-defined problem. As
a consequence they are not expected to be applicable to (20). On the other hand, the extension
of the algorithms to the pessimistic formulation (21) is relatively simple as described in the
following. The only major change required is to replace the upper bounding problem with
two subproblems. The first is to maximize the constraint violation

v = max
y

max
i

gi (x̄, y)

s.t. p(x̄, y) ≤ 0

q(y) ≤ 0

h(x̄, y) ≤ h∗ + εh

y ∈ Y.

This program is feasible for all x̄ for which the inner program is feasible. If v>0 then x̄
is infeasible in (21). Otherwise x̄ is feasible in (21) and its objective value is given by the
optimal objective value of

max
y

f (x̄, y)

s.t. p(x̄, y) ≤ 0

q(y) ≤ 0

h(x̄, y) ≤ h∗ + εh

y ∈ Y.
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